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produits pérennes, Montpellier, F-34398 France, Cirad, UPR Qualité des aliments, Montpellier,
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A sorghum core collection representing a wide range of genetic diversity and used in the framework
of a sorghum breeding and genetics program was evaluated by near-infrared reflectance spectroscopy
(NIRS) to predict food grain quality traits: amylose content (AM), protein content (PR), lipid content
(LI), endosperm texture (ET), and hardness (HD). A total of 278 sorghum samples were scanned as
whole and ground grain to develop calibration equations. Laboratory analyses were performed on
NIRS sample subsets that preserved the core collection racial distribution. Principal component
analysis performed on NIRS spectra evidenced a level of structure following known sorghum races,
which underlined the importance of using a wide range of genetic diversity. Performances of calibration
equations were evaluated by the coefficient of determination, bias, standard error of laboratory (SEL),
and ratio of performance deviation (RPD). Ground grain spectra gave better calibration equations
than whole grain. PR equation (RPD of 5.7) can be used for quality control. ET, LI, and HD equations
(RPD of 2.9, 2.6, and 2.6, respectively) can be used for screening steps. Even with a small SEL in
whole sample analysis, a RPD of 1.8 for AM confirmed that this variable is not easy to predict with
NIRS.
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INTRODUCTION

Sorghum (Sorghum bicolor(L.) Moench) is a major food
cereal in Asian and African countries; therefore, grain quality
is an essential trait for farmers and consumers and is becoming
a criterion of increasing importance for breeding programs.

Grain quality demand varies depending on the type of final
product but is essentially determined by grain biochemical and
physical characteristics. Amylose (AM), protein (PR), and lipid
(LI) contents influence rheological and sensory properties of
some traditional sorghum dishes. The consistency of thick
porridge such as tô in western Africa or ugali in eastern Africa
is significatively and positively correlated with AM but nega-
tively correlated with PR and LI (1). Cooked couscous firmness
correlates positively with apparent AM (2) while waxy sorghums
(with no amylose) produce sticky masa and tortillas with

unacceptable rollability (3). Endosperm texture (ET) and hard-
ness (HD) affect grain mold resistance, grain storage ability,
milling behavior, flour particle size, and cooking properties (4-
6). Hard grains produce flours containing a high proportion of
coarse particles with low ash content and high level of damaged
starch and yield a high proportion of desirable sorghum couscous
granules (2). Sorghum cultivars with soft endosperms give good
quality injera with soft texture (7).

When a large number of samples require analysis, as is usual
in breeding programs, standard laboratory methods for measur-
ing these quality traits appear cumbersome, time-consuming,
and expensive. The use of near-infrared reflectance spectroscopy
(NIRS) seems a more appropriate method, being faster and
nondestructive when applied on whole grains. The technique is
based on the vibrational properties of molecules and their
interactions with light. Spectral data are correlated with
biochemical component contents obtained through standard
methods (8). However, NIRS is an indirect method that needs
a large number of samples, covering a broad variability for each
trait with a distribution more or less uniform between extreme
values, to obtain an accurate calibration equation (8).
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‡ Universidade Católica de Brası́lia.
§ Cirad, UPR Qualité produits pérennes.
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Few studies have reported the use of NIRS on sorghum, with
most performed on ground grains. Rami (9) evaluated grain
biochemical (AM, PR, and LI) and physical characteristics (ET
and HD) from ground grains of two recombinant inbred line
populations. Fontaine et al. (10) evaluated PR and amino acid
contents from ground grains of 167 samples. Hicks et al. (11)
compared whole and ground grain NIRS calibrations for starch
content, LI, PR, and protein digestibility for 23 sorghum lines
and hybrids planted in two locations with four replications. Rami
(9) and Fontaine et al. (10) reported equations of good
performance for PR and HD, with low SECV (standard error
of cross validation), but calibration equations were not found
sufficiently efficient for prediction of AM and LI (9-11).

In these previous studies, accessions were limited in number
(11) or were very specific, such as mapping populations (9).
The use of a sorghum core collection, which is a set of
accessions that best represents the species genetic diversity (12),
should bring a natural and continuous variability among traits
of interest and improve the quality of NIRS prediction equations.
A sorghum core collection of 210 accessions was developed
from International Crops Research Institute for the Semi-Arid
Tropics (ICRISAT) and CIRAD (Centre de Coopération Inter-
nationale en Recherche Agronomique pour le Développement)
germplasm banks, based on criteria of racial classification,
geographic origin, photoperiod sensitivity, and molecular genetic
diversity (13). The accessions composing the core collection
are cultivated varieties and represent a broad diversity of grain
size, shape, and color, as well as various consumers’ usages
and tastes in terms of grain quality. The measurement of their
biochemical and physical characteristics, however, had not yet
been undertaken.

The objective of this study was to take advantage of the large
diversity of the sorghum core collection to develop NIRS
calibrations for the most important food grain quality traits (AM,
PR, LI, ET, and HD) and use these calibrations to predict the
whole core collection to be able, later, to draw on the results
for varietal comparisons and genetic analyses in the framework
of a sorghum breeding program. Calibration equation perfor-
mances obtained from whole and ground grain will be compared
and the possibility to develop a nondestructive measurement
method eliminating the tedious grinding step will be discussed.

MATERIALS AND METHODS

Materials. We analyzed 205 accessions of the core collection,
belonging to five basic races, according to the classification proposed
by Harlan and de Wet (14): Guinea (n) 60), Caudatum (n) 43),
Durra (n) 29), Bicolor (n ) 24), Kafir (n ) 18), and five intermediate
races (n ) 31). The accessions originated from 39 countries representing
sorghum production areas.

Most samples (n ) 199) were harvested from an irrigated trial
conducted during the 2002-2003 dry season at CERAAS (Centre
d’Etude Régional pour l’Amélioration de l’Adaptation a` la Sécheresse)
in Senegal. A dry season trial was chosen to ensure the most
homogeneous conditions during grain filling, enhancing the expression
of genetic differences in grain quality between varieties. The varieties
were sown in an augmented design with 10 blocks and 27 plots per
block, with six varieties used as control in each block. The six control
varieties were Argence, Vacarès, DK18, IRAT 204, BF201, and B3052.
With the exception of IRAT 204, all are breeding materials from
temperate areas. Eight local varieties were added to complete the
experimental design. A total of 266 samples were collected because
three varieties did not germinate and one control was discarded. Twelve
varieties, including amylose and protein mutants, not included in the
trial were added to the set. A total of 278 samples were analyzed.

Sample Preparation.Specific operations were conducted to remove
sources of bias in varietal comparisons. Grains were manually cleaned

to remove glumes, dust, broken grains, green grains, and grains damaged
by insects and were calibrated by using 2 min of sifting through a sieve,
adapted to the average grain size of each sample (Alpine type 200 LS
air jet sifter). Moisture content was measured in 40 samples. The
average moisture content was used to calculate the quantity of water
to be added to each sample to reach 11.5% moisture content. Samples
were stored in individual plastic containers for a minimum of 8 days
minimum before analysis. For all biochemistry and NIRS analyses, 20
g of cleaned and conditioned sample was ground in a Perten Mill 3100
with 0.8 mm sieve.

NIRS Instrumentation and Measurement. A monochromator
instrument NIRS 6500 (Foss NIRSystems, Silver Spring, MD) was used
to scan the reflectance from 400 to 2500 nm at 2 nm intervals, using
ring cups (50 mm diameter) with 3.0 g of ground grain and 6.5 g of
whole grain, respectively. Data were saved as the average of 32 scans
and stored as log(1/reflectance) using a ceramic standard reference
spectrum. Spectrum acquisitions were duplicated for whole grain (two
filled cells) and the spectrum average was stored. For ground grains,
spectra were acquired once.

Statistical analyses were performed using Win-ISI II software
(Infrasoft International, Port Matilda, PA).

A principal component analysis (PCA) was run and the generalized
Mahalanobis distances (H) were computed for each spectrum. All
samples havingH value above 3 were considered as outliers.

Choice of the Samples for Laboratory Analyses.A subsample of
the core collection was selected for laboratory analyses from grain
spectra, based on neighborhood Mahalanobis distances (NH). Two
samples were considered neighbors whenNH was below 0.75. The
sample with most neighbors was selected and its neighbors were
eliminated. This process was iterated until all samples had been rejected
or selected.

Laboratory Analyses. AM was assessed by measuring the latent
heat of melting of the complex formation between amylose and
phospholipids. It was measured by differential scanning calorimetry
on 10-11 mg of ground grain in the presence of a lysophospholipid
solution with a Perkin-Elmer DSC 7 (15). PR was calculated from the
total organic nitrogen content (N× 6.25) determined by the Kjedahl
method using 1.0 g of flour with a Kjeltec 1030 Tecator. LI was
determined by using the Soxhlet method after extraction with diethyl
ether with a Soxtec HT distiller (Tecator). ET was determined by visual
assessment of the relative proportion of vitreous and floury endosperm
areas on longitudinal cross sections of 15 grains. Each grain was scored
on an international scale from 1 to 5 ((0.5) where 1 corresponded to
a completely vitreous endosperm and 5 to a completely floury
endosperm (16). HD was evaluated using a particle size index (PSI)
method, evaluating the percentage of ground grain that sifted through
a 250µm sieve after 2 min by using an Alpine type 200 LS air jet
sifter (16). The higher the PSI, the more floury the grain. A randomized
part of the samples was measured twice to compute the standard error
of laboratory (SEL).

NIRS Calibration Development. Unless specified, spectra were
mathematically corrected for light scattering by using the standard
normal variate and the detrend correction (17). The first and second
derivative of log(1/R) were systematically compared to log(1/R) for
best calibration performance. It was calculated using a gap of 5 points
and 5 point polynomial smoothing.

Calibrations were performed using a modified partial least-square
(mPLS) regression of WinISI. Calibration statistics included the
following parameters: standard deviation (SD) of the population,
coefficient of determination (RSQ) and regression slope, bias, standard
error of calibration (SEC), and SECV. For SECV, 25% of the samples
was used to validate a calibration model developed with the other 75%.
SECV was repeated four times and the average calculated. The ratio
of performance deviation (RPD) was calculated as SD/SECV. The
Student test (t) was used to identifyt-outlier samples.

RESULTS

PCA. We have analyzed a core collection representative of
the genetic diversity of cultivated sorghums to predict the main
food grain quality traits using NIRS. PCA spectra from whole
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and ground grain revealed the importance of the use of a large
genetic diversity to develop calibration equations. The first 15
principal components explained 99.7% of the variance of whole
grain NIRS spectra, with the two first axes accounting for 71.6%
and 18.2%, respectively. For ground grain spectra, the first 24
principal components explained 99.6% of the variance, the two
first axes accounting for 39.0% and 34.8%, respectively. The
overall variability was well-represented by the first plan of the
ground grain PCA, which was used to present graphics in this
paper.

Control varieties were replicated 10 times according to the
experimental design.Figure 1 shows the score plots of the 10
replications for the control variety Vacarès. These replications

clustered close together (H value mean of 0.6), confirming the
absence of a block effect in the Senegal trial (18). The same
pattern was observed for the other five control varieties (data
not shown). A comparable grouping was observed for the whole
grain spectra.

The 12 extra samples that were not grown in the Senegal
trial were not H outliers (averageH value of 1.27 with a
minimum of 0.53 and a maximum of 2.38) and appeared
scattered in the core collection (Figure 1).

Figure 2 shows the importance of using a core collection
with a diverse racial representation to sample a large diversity.
It shows a tendency for races to gather on the first plan. The
accessions belonging to bicolor race clustered on the left bottom

Figure 1. Scatter plot scores of accessions for the first two principal components from ground grain spectra. The 10 replicates of a control variety (∆)
and 12 additional accessions (9) are individualized.

Figure 2. Scatter plot scores of accessions classified by race for the first two principal components from ground grain spectra. One replicate only per
control variety is represented on the graph.
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side of the plan. The caudatum accessions were mostly present
in the upper quadrants of the graph with two subgroups, one in
each quadrant. Most of durra accessions were concentrated in
the right upper quadrant. The guinea were relatively well-
distributed except in the upper left quadrant. The kafir were
grouped in the graph center. The accessions of intermediate races
were dispersed in the whole plan. This tendency was confirmed
for whole grain spectra (data not shown).

While some trends were also observed on the first PCA plan
for grain characteristics such as grain color or presence of a
testa (data not shown), there were enough intermediate samples
to consider the spectra population as homogeneous.

Sample Selection.Outliers were removed from the calibration
when theirH values for the average spectrum were computed
above 3. For ground grain spectra, four samples were excluded.
Two of them were mutants with no amylose (H of 3.36 and
3.45). To improve homogeneity, the third mutant, with anH of
2.86, was also removed, bringing the number of ground grain
samples down to 273. For whole grain spectra, in addition to
the mutants, another three samples were excluded, reducing the
number of whole grain samples to 272.

Once outliers were discarded, a neighborhood clustering based
on NH values was used to select a subsample representative of
the core collection diversity, which was analyzed by laboratory
standard methods. Starting from whole grain spectra, a first set
of 84 samples was selected. This set was complemented by 26
samples selected from ground grain spectra taking into account
ground grain specific diversity. The racial distribution of these
110 samples was similar to that of the core collection with nearly
50% of the accessions selected for each race, showing that NIRS
sampling strategy preserved the core collection racial distribu-
tion.

The number of 110 samples for laboratory analyses was
progressively increased for traits that did not give excellent
calibration equations. As a whole, 30 samples selected based
on NH from ground grain were added for PR and 10 for HD,
while all the samples were analyzed for AM and ET.

Laboratory Analyses.Laboratory analyses were duplicated
on all the selected samples for PR (140) and a portion for AM
(88 out of 278), LI (84 out of 110), and HD (58 out of 120).
The number of samples analyzed in the laboratory (N), mean,
range, standard deviation (SD), and coefficient of variation
among samples (CVAS), standard error of laboratory (SEL), and
coefficient of variation among duplicates (CVAD) are shown in
Table 1 for the five traits after exclusion of the mutants with
no amylose. The repeatability (SEL) was excellent for all
biochemical parameters with coefficients of variation among
duplicates (CVAD) varying from 1.0% to 2.4%. For physical
parameters, CVAD was also good for HD (2.6%) while ET had
the highest CVAD (4.5%).

Data distribution was Gaussian only for PR (Figure 3). AM
had the lowest diversity with values ranging from 15.2 to 24.6
(CVAS of 7.5%,Table 1). LI had intermediate diversity (CVAS

of 14-16%). These two biochemical traits lacked samples in
the extreme values: five samples had amylose content lower
than 17% and four had lipid content over 5.2. By contrast,
physical traits (HD and ET showed the highest CVAS (around
30%). The whole scale was covered for ET with three cultivars
completely floury (ET) 5.0) and three others completely
vitreous (ET) 1.0).

Calibration from Whole and Ground Grain Spectra.
Calibrations were established from whole and ground grain
spectra. During the calibration process,t-outliers were removed
from the data set (Tables 2and3, Figure 4). For AM, the 10
t-outliers comprised some extreme values, hence lowering SD,
particularly for ground grain calibration. Fewt-outliers were
evidenced for PR, LI, and HD, but they also comprised some

Table 1. Laboratory Data of Sorghum Samples (Three Mutants with
No Amylose Excluded)a

trait N mean range SD CVAS SEL CVAD SD/SEL

AM 275 20.8 15.2−24.6 1.5 7.5 0.50 2.42 3.0
PR 137 13.9 7.3−18.0 2.0 14.4 0.14 1.01 14.3
LI 107 3.82 2.89−6.19 0.62 16.3 0.09 1.60 6.9
ET 275 2.8 1.0−5.0 0.9 32.1 0.13 4.5 6.9
HD 117 13.6 8.2−25.7 3.6 26.5 0.35 2.6 10.3

a AM: amylose content in % dry basis; PR: protein content in % dry basis; LI:
lipid content in % dry basis; ET: endosperm texture; HD: grain hardness; N:
number of samples; SD: standard deviation; CVAS: coefficient of variation among
samples (%); SEL: standard error of laboratory for duplicated samples; CVAD:
coefficient of variation among duplicates (%).

Figure 3. Distribution of amylose content, protein content, lipid content,
endosperm texture, and grain hardness from laboratory analyses.
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extreme values (the lowest PR value and the highest LI value
for ground grains). Severalt-outliers were detected for ET but
none of them was an extreme value and SD of the calibration
population was similar to that of actual values (Table 1). The
t-outliers did not share any specific characteristic in terms of
race, grain color, or presence of a testa.

The RSQ, the bias, and the RPD are the most meaningful
statistics for rapid appraisal of calibration performance (19). The
calibration performance was good for PR, particularly for ground
grains (Table 2andFigure 4): the RPD was 5.7 and the RSQ
was 0.98 while the regression line between actual and predicted
PR values had a slope of 1.00 without any bias. RPD of 3.2
and RSQ of 0.95 for PR were slightly lower for whole grains
whereas SECV almost doubled (from 0.35 to 0.62), indicating
a degradation of the calibration performance. Nevertheless, slope
and bias did not change. A quite similar figure was observed
for LI, HD, and ET calibrations, with lower RPD (over 2.5 for
ground grain calibration and very close to 2 for whole grain
calibration (Tables 2and3, respectively) and RSQ values (over
0.84). The bias was null for ground grain calibration and
remained low for whole grain calibration. Based on RPD, the
calibration performance for AM was poor. It was nevertheless
very similar for whole and ground grain (RPD) 1.7 and 1.8,
respectively).

The best calibrations were obtained with complete scatter
correction (second derivative and standard normal variate
detrend (SNVD) correction) for chemical components and HD.
For ET, however, scatter correction could be detrimental, and
better calibrations were obtained without derivating ground grain
spectra and without SNVD correction of whole grain spectra.
Spectral information was reduced to the infrared portion for all

models: the visible region was detrimental in all cases,
increasing noise and decreasing the performance of the models.
Full infrared region (908-2492 nm) was used for PR, LI, and
ET but the reduction to the 1108-2492 nm portion improved
the calibration performances of AM and HD either for whole
and ground grain spectra.

DISCUSSION

We have analyzed a large collection of accessions representa-
tive of the genetic diversity of cultivated sorghum using NIRS.
The quality of standard analyses is a prerequisite for developing
NIRS calibration. Williams (19) recommended for example a
CV of the reference methods (CVAD) lower than 2% for
chemical composition but close to 1% for protein content. The
CVAD of PR was 1.0% (Table 1) and most traits had a CVAD

below 2.6%. However, ET showed a lower precision (CVAD of
4.5%) which was linked to the method used, based on a score
after visual examination of 15 grain cross sections. It could be
improved by using objective assessment of vitreous and floury
endosperm areas as used for maize (20) and by increasing the
number of analyzed grains.

Spectral reproducibility is another prerequisite. It can be
estimated by measuring the rms (root mean square) of sub-
samples. In our study the rms values were below 250µabs
(absorbance) units for whole grain and below 200µabs for
ground grain. This underlined the quality of spectrum data and
the proper manipulations during harvest, conditioning, and NIRS
acquisitions. The vicinity of control varieties on PCA figures
also confirmed the minimal variation due to environment
heterogeneity in the trial (18).

Table 2. NIRS Calibration Statistics to Physical and Biochemical Characteristics of Sorghum Ground Grainsa

trait Nc t mean range SD slope RSQ bias SEC SEC V RPD
wavelength

range math. corr.

AM 263 10 20.8 15.2−23.6 1.41 0.99 0.75 0.17 0.71 0.77 1.8 1108−249 2 second der,
SNVD

PR 131 4 14.0 9.2−18.0 2.0 1.00 0.98 0.00 0.28 0.35 5.7 908−2492 second der,
SNVD

LI 101 4 3.78 2.89−5.61 0.56 1.00 0.91 0.00 0.17 0.19 2.9 908−2492 second der,
SNVD

ET 263 10 2.9 1.0−5.0 0.93 1.00 0.87 0.00 0.33 0.36 2.6 908−2492 SNV
HD 109 2 13.5 8.2−25.5 3.56 1.00 0.90 0.00 1.14 1.37 2.6 1108−249 2 second der,

SNVD

a AM: amylose content in % dry basis; PR: protein content in % dry basis; LI: lipid content in % dry basis; ET: endosperm texture; HD: grain hardness; Nc: number
of samples used in the calibration; t: t-outliers; SD: standard deviation; RSQ: coefficient of determination; SEC: standard error of calibration; SECV: standard error of
cross validation; RPD: ratio of performance deviation; math. corr.: mathematical correction; der: derivative; SNVD: standard normal variate detrend; SNV: standard
normal variate.

Table 3. NIRS Calibration Statistics for Physical and Biochemical Characteristics of Sorghum Grains

trait Nc t mean range SD slope RSQ bias SEC SECV RPD
wavelength

range math. corr.

AM 259 13 20.9 17.2−23. 6 1.29 0.99 0.70 0.22 0.71 0.75 1.7 1108−2492 second der,
SNVD

PR 131 3 14.0 9.2−18.0 2.01 1.00 0.95 0.00 0.47 0.62 3.2 908−2492 second der,
SNVD

LI 102 2 3.8 2.89−6.1 9 0.60 1.00 0.84 −0.02 0.24 0.33 1.8 908−2492 second der,
SNVD

ET 260 13 2.9 1.0−5.0 0.93 1.00 0.85 0.01 0.36 0.45 2.1 908−2492 second der
HD 106 5 13.5 8.2−25.5 3.60 0.99 0.88 0.16 1.27 1.71 2.1 1108−2492 second der,

SNVD

a AM: amylose content in % dry basis; PR: protein content in % dry basis; LI: lipid content in % dry basis; ET: endosperm texture; HD: grain hardness; Nc: number
of samples used in the calibration; t: t-outliers; SD: standard deviation; RSQ: coefficient of determination; SEC: standard error of calibration; SECV: standard error of
cross validation; RPD: ratio of performance deviation; math. corr.: mathematical correction; der: derivative; SNVD: standard normal variate detrend.
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PCA figures of NIRS ground grain spectra evidenced a cluster
formation based on race basis. Samples of each race were hence
necessary to represent the grain genetic diversity inSorghum
bicolor. This validated the approach of using a core collection
for building a NIRS model. It should be noticed that although

the core collection was not built on food grain quality criteria,
it included reasonably diverse samples of each race for these
traits.

Interpretation of PLS factors can provide information on the
intrinsic features of the relationship between the optical and
reference data (19). We attempted to interpret in particular the
loadings of the first axis that accounted for the major contribu-
tion of the models for PR, LI, HD, and AM. Surprisingly, the
loadings of the first factor were very similar for PR and LI
(Figure 5). This may be due to spectral acquisition and reference
data obtained on whole grain (ground or not); lipids and proteins
originating from the germ may indeed contribute to a large
portion of the variability, being both largely correlated to the
size of the germ. This will be further explored by analysis
focused on physicochemical relationships within the sorghum
core collection. The major bands could be interpreted quite
easily by reference to a near-infrared second derivative spectra
database (21). The sharp doublet centered on 2300 nm was
clearly due to lipids. Negative doublets around 2000 and 1700
nm could be assigned to proteins and the positive doublet around
2100 nm to starch. The peak observed around 1900 nm was
surely related to water. It should be noticed that the bands
assigned to lipids and proteins varied in the same direction as
for the pure components whereas an inverse figure was observed
for starch. Loadings were hence more correlated with LI and
PR bands and less correlated with starch bands. This appeared
meaningful, hence confirming the validity of the models for
PR and LI.

AM and HD loadings of the first PLS factor were also quite
similar (Figure 6). They presented in particular the very sharp
doublet around 2300 nm, but as a top/down image of LI and
PR loadings. Similarly, starch and protein bands centered at
2100 nm, and at 2000 and 1700 nm, respectively, were present
and reversed comparing to LI and PR loadings. AM loadings
showed in addition to a negative peak around 2430 nm and a
negative/positive peak around 1400 nm that both are typical of
starch second derivative spectra. Furthermore, it could be noticed
that the negative doublet centered at 2100 nm was more intense
before this peak, with a weak shoulder after it. This appeared
also very meaningful as amylose presents this figure whereas
amylopectin shows adversely a main peak above 2100 nm and
a shoulder before (22).

The figure was quite different for ET. The three first axes of
the PLS accounted for the same weight. The loadings on the
two first axes appeared mainly linked to light absorption and
scattering, particularly in the very near infrared (below 1100

Figure 4. Regression of NIRS predicted data on laboratory data using
ground grain spectra, with all t-outliers excluded but visible on the figure
as (x) for each trait.

Figure 5. Loading spectrum of PR and LI along all nonvisible light (908−
2484 nm) for the first modified partial least-square.
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nm, Figure 7). Absorption bands could only be evidenced on
the third one, with the bands assigned to lipids centered at 2300
nm, to starch at 2100 nm, and to proteins around 1950 nm.
This confirmed that ET was mainly modeled by NIRS through
the scattering phenomenon, in accordance with the nature of
the trait itself.

Data range for all five traits were similar to some previously
reported in studies involving large accession numbers and
measured by standard analysis methods (23). It was also similar
to data obtained in previous studies dealing with NIRS calibra-
tion for PR and AM (9, 10) but higher for LI and physical traits
(9). The narrow AM range, with a continuous distribution close
to normal once the mutants were removed, may be due to
selection because of domestication of accessions assigned to
human consumption for which high AM is required in many
traditional dishes (16). It is a general rule in chemometrics that
to obtain good NIRS calibration, the distribution in the calibra-
tion population should be uniformly distributed between the
extreme values (8). It was more or less the case for ET but not
for AM, PR, LI, and HD. Another rule to obtain good calibration
is to have a sufficiently reliable reference method which can
be measured by the ratio of the SD in the population to the
SEL reference method (SD/SEL,10). The ratio should be over
5 to 20 (8, 10) but never less than 3. We obtained a satisfactory
ratio for most traits except for AM (Table 1). In short, our data
confirmed that even with a precise reference method (CVAD of
2.4%), the natural genetic diversity of AM was not suitable for
developing a good calibration.

Calibration performance is largely appraised by the RPD,
which is considered adequate for screening in breeding programs
when ranging from 2.5 to 4.9 and adequate for quality control
when ranging from 5 to 10 (24). We obtained a RPD of over 5
only for PR with ground grain spectra. Our models for PR either
from grain or ground grain spectra were more accurate than
those obtained by Hicks et al. (11) and Rami (9). Fontaine et
al. (10), however, recorded a higher RPD (7.7), probably due
to a larger number of samples (n ) 167). PR is by far the most
frequent application of NIRS analysis, particularly on cereals
for which high RPDs are found (10, 24, 25).

LI showed the second highest RPD on ground grain spectra.
It was higher than that obtained by Rami on sorghum (9), and
in the same range of those obtained for wheat (26) or chickpea
and pea (25). Prediction accuracy was much lower for the whole
grain spectra model, in agreement with Flinn et al. (25). Vines
et al. (27) obtained a much higher RPD (8.5) for LI. However,
their work was based on cereal food products (breakfast cereals,
snacks, cookies, etc.), having a very large range of LI (0.5-
43.2%) and their SECV was 1.1, 5 times higher than ours.
Moreover, the comparison of SECV with SEL is helpful: SECV
of PR and LI predicted from ground grain spectra (0.35 and
0.19, respectively) was about double of SEL and were in the
same order as numerous studies on wheat (SECV for PR ranging
from 0.18 to 0.34,28). This appears very satisfactory for simple
assessment of these traits in view of evaluation without any
manipulations except grinding. SECV increased to 0.62 and 0.33
for PR and LI, respectively, when predicted from whole grains,
which could be sufficient for rapid screenings of numerous
samples that could be sown in addition after analysis.

Physical traits did not register as good performance with a
RPD of 2.6 for ground grain spectra and 2.1 for whole grain
spectra (Tables 2and3). Rami (9) obtained a RPD of 1.5 for
HD predicted from sorghum ground grain spectra. HD has been
however mainly studied on wheat (24,26,29) for which higher
RPD was found. Our model could be improved by increasing
the number of reference determinations for HD (117 reference
values) but not for ET for which all 278 samples were analyzed.
A better calibration was obtained for ET when absorbance was
not corrected from light scattering. ET is indeed a visual
character due to light scattering on individual particles and/or
on air bubbles. It is therefore consistent that the light scattering
phenomenon takes place in the model. On the other hand, it
was surprising that the same figure was not observed for HD,
which represents the particle size of the flour: the model was
better including SNVD correction for both whole and ground
grain spectra.

The lowest RPD was obtained for AM (lower than 2),
although all the 278 samples were analyzed and 88 duplicated.
Working on a mapping population, Rami (9) obtained the same
RPD (1.82) with a higher SECV (0.99). AM appears indeed
difficult to analyze by NIRS. Delwiche et al. (30) and Wu et
al. (31), even using larger populations and AM ranges that
comprise amylose mutants, did not get a RPD higher than 3.1
for milled rice. Sohn et al. (32) obtained a RPD of 5.3 but with
a rice population presenting a SD value of 5.4 and samples with
intermediate AM. Their SECV (1.02) was actually higher than
ours (0.77). Considering the SECV, our model appeared indeed
quite efficient: SECV was only 1.5 higher than SEL (33). The
drawback of this model is the small AM range (15-24%) of
applicability. The three mutants with no amylose were thus
predicted with AM between 19.3 and 21.8%. When the
calibration was performed without excluding the mutants, a
higher RPD was obtained (2.7) with only a small degradation

Figure 6. Loading spectrum of AM and HD for the first modified partial
least-square.

Figure 7. Effect of scattering phenomenon for ET among loading spectra
for the three first modified partial least-squares (mPLS).
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of the SECV (0.84). In this case, two of the three amylose
mutants were correctly predicted (-0.59, 0.39, and 6.97).
Delwiche et al. (22) developed a model with a SEP of 1.0 that
can predict AM of waxy and non-waxy rice. However, such
model used as many as 18 PLS factors, against five in our case,
a sign of a possible overfitting. Calibration populations including
waxy mutants always present a discontinuity without any sample
in the 2-14% range. PLS was in this case inappropriate;
therefore, Campbell et al. (34) using near-infrared transmittance
spectroscopy on maize and Delwiche and Graybosch (35) using
NIRS on wheat proposed to use a factorial discriminant analysis.
They were able to correctly predict a large number of mutants
with no amylose with few misclassifications. We obtained the
largest natural diversity available by using a world core
collection but failed to cover the whole range of AM that would
be necessary for designing a better model. Although artificial
calibrations are seldom possible (8), it might be necessary, to
improve our model, to build artificial samples by mixing waxy
and nonwaxy ground grains, or use progenies obtained by
crossing contrasted varieties to cover a larger AM range (31).
Such approaches should still be validated.

The use of whole grain to develop calibration equations has
been studied for some cereals and legumes (11,25, 29, 36) in
view of eliminating the tedious grinding step and developing a
nondestructive measurement method. We obtained acceptable
reproducibility of NIRS spectra acquisition on whole grain, even
using spin cells, probably because of the small size and round
shape of sorghum grains. This allows working with small
amounts of grain which is often the case in breeding programs.
However, in agreement with previous studies (11,24,25), whole
grain models evidenced a lower accuracy than ground grain
models for most analyzed traits, except amylose. This may be
due to a higher scattering noise for whole grain spectra. The
PCA first axis indeed explained a much higher proportion of
variance for whole grains while this axis is generally attributed
to scatter variability due to the particle size effect (8, 11, 24,
29, 37) even after spectrum pretreatments (17, 37). The
efficiency of calibration models from whole grain could be
improved by increasing the number of accessions. When a larger
volume of seed per sample is available, the use of a transport
module with a larger scanning surface should probably improve
NIRS acquisition and calibration performances (36).

The performances of the NIRS equations developed in our
study for AM, PR, LI, ET, and HD were appreciated using
SECV and RPD statistics. While the validation of these
equations using independent samples remains to be done, they
can already have an application in breeding and technology
programs to compare varieties. The quality and potential of our
NIRS equations is due to the use of a core collection of
cultivated sorghums that covers a broad diversity of consumers’
usages, and the accuracy of the developed models. ET, which
is a very important sorghum food physical quality trait, was
for the first time exploited by NIRS. Whole and ground grain
models were developed in view of eliminating the tedious and
time-consuming grinding step. PR had the best equation and
can be used for quality control in breeding and food technology
programs. ET, LI, and HD equations can be used for screening
steps. AM was more difficult to model by NIRS, which suggests
the use of an artificial reference with intermediate AM samples
to improve accuracy and robustness of the model.
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(36) Pérez-Marin, D. C.; Garrido-Varo, A.; Guerrero-Guinel, J. E.;
Gome-Cabrera, A. Near-infrared reflectance spectroscopy (NIRS)
for the mandatory labelling of compound feedingstuffs: chemical
composition and open-declaration.Animal Feed Sci. Technol.
2003,116, 333-349.

(37) Stuth, J.; Jama, A.; Tolleson, D. Direct and indirect means of
predicting forage quality through near infrared spectroscopy.
Field Crop Res.2003,84, 45-56.

Received for review April 14, 2006. Revised manuscript received
August 21, 2006. Accepted August 24, 2006.

JF061054G

Development of NIRS Equations for Food Grain Quality Traits J. Agric. Food Chem., Vol. 54, No. 22, 2006 8509


